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We prove the central limit theorem for the density fluctuation field of a one- 
dimensional mechanical system (hard rods with equal masses and lengths and 
elastic collisions) in the hydrodynamic limit on the Euler time scale. The 
limiting process is deterministic and is governed by the linearized Euler 
equations of the model. 
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INTRODUCTION 

The Euler equations describe the asymptotic behavior, on a certain scale in 
space-time, of the locally conserved fields of a classical system of New- 
tonian particles. In a suitable limit, called the hydrodynamic limit, the 
detailed description of the fluid in terms of the positions and velocities of a 
great number of particles goes over into a greatly simplified description in 
terms of a few continuous observables (mass density, momentum den- 
sity, etc.). The mathematical reality behind this phenomenon is of course 
the law of large numbers (LLN), and the mathematical scenario for 
proving the validity of the Euler equations is by now well established/5'6'~7) 
Filling in the details is, however, extremely difficult, and a rigorous proof 
has been given only for certain models with simplifying features (ideal 
gases, one-dimensional harmonic oscillators, and certain models with 
stochastic dynamics). See the recent review in ref. 5. 
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Probabilistically, the next level of description beyond the LLN is the 
central limit theorem (CLT). The CLT describes fluctuations, and a 
physical theory predicting the dynamics of these fluctuations around the 
Euler limit has also been worked out. (~1'15) Essentially, the physical predic- 
tion is that the fluctuations evolve (on the same scale where the Euler 
equations are valid) deterministically, the dynamics being given by the 
linearized Euler equations linearized around the true solution (given the 
initial data). This reflects the fact that the fluctuations represent very mild 
perturbations away from the (nonrandom) value predicted by the Euler 
equation. 

In this paper we prove an appropriate CLT for the fluctuation fields of 
a one-dimensional mechanical model, the so-called hard rods. These are 
one-dimensional hard cores of a fixed finite length, having equal masses, 
and moving at constant velocities between collisions. The collisions are 
assumed to be instantaneous and elastic. The hard rods are one of the very 
few models with nontrivial interactions for which the Euler equations have 
been derived rigorously ~3m (a heuristic derivation was given earlier~8)). (In 
ref. 3 the authors state only the convergence of the expected value of the 
density field to the solution of the Euler equations, but we show that the 
LLN was implicit in their results; see Section 3.) The limiting fluctuation 
process is shown to agree with the physical prediction. For the limit of the 
time-correlation functions of the fluctuation field (in equilibrium), this 
result was obtained previously. ('9) 

The fluctuations can be thought of (probabilistically) as representing 
"corrections" to the LLN, but physically one expects "next corrections" to 
the Euler limit to involve space-time noise and dissipation. The 
corresponding hydrodynamic equations "with next corrections" are called 
the Navier-Stokes equations. 

We have also investigated the appearance of these new phenomena, 
which occur on a longer time scale, in the fluctuation process. We find that 
on this new time scale the fluctuation process becomes non-Gaussian and 
stochastic. The covariance at several times determines a second-order 
operator which agrees with the predictions of Green-Kubo formulas. (19) 
We express this operator in terms of the Brownian motion of "pulses" in 
the hard rod fluid. These results will form the contents of a second paper. 

The organization of this paper is as follows. In Section 1 we define the 
model and discuss space-time scalings and the Euler equation. In Section 2 
we introduce the equilibrium fluctuation process and prove two forms of 
the CLT: a multivariate theorem for the fluctuations in occupation num- 
bers of intervals at several times, and an "invariance principle" (Donsker's 
form of the CLT) for the density fluctuation field. In Section 3 we discuss 
the LLN and prove the first form of the CLT for the nonequilibrium case 
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(in the same degree of generality as in ref. 3). As our CLT is derived from a 
theory of Billingsley concerning random sums of random variables, we 
present a short reprise of Billingsley's results in an appendix. 

1. T H E  M O D E L .  S P A C E - T I M E  S C A L I N G  A N D  T H E  
EULER E Q U A T I O N  

We first introduce the system of hard-rods and discuss its main 
properties. We give references to the literature rather than proofs for the 
facts claimed. We follow in the most part the notation of refs. 2-4. 

The hard rods form an (infinite) mechanical system in one space 
dimension. Our rods will all have mass one and length d > 0 .  A rod can 
have any velocity v ~ ~. The phase space of the system of hard rods, which 
we denote by J/i'd, is the set 

{(qi, v~): (qi, vi)e ~2, 

qi<~qi+l-d, - ~ <  ".. <q_~ <qo<q~ < ""  < + ~ }  

[Actually, we shall restrict the phase point (which we denote by X) to a 
subset d / ~ =  J/td (in the notation of refs. 3 and 4), in which the dynamics is 
well defined.] A topology, a corresponding Borel a-algebra, and an 
appropriate class of states (including Gibbs states) are defined on J/d in 
refs. 3 and 4. We confine ourselves to introducing a class of equilibrium 
states, each measure of which will be invariant under the hard-rod 
dynamics discussed below. 

Choose a probability measure h(dv) on ~ to play the role of velocity 
distribution. We assume that h(.) has finite moments (through fourth 
order), and that 

f+oo v h(dv)=O (1.1) 
- - O Q  

[If (1.1) is violated, we need only make a Galilean transformation.] 
Choose a number p < d -  1 to play the role of the density. We define a 

measure P on Jga heuristically by declaring that P is translation invariant 
under space translations, that the interrod spacings are independent and 
exponentially distributed with mean p - ~ (1 - pd), and that the velocities are 
independent of each other and of the rod positions and are distributed by 
h(dv). More precisely, we define P by the following contraction procedure 
and Palm construction. Let (qo, Vo) be a rod in X. Define Cqo(X ) to be the 
point-particle phase point obtained from X by "contraction around q0," 
i.e., Cqo(X)= {(q;, vi)} with q; =qi - id .  Let pO be a Poisson point process 
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on ~2 with intensity Po dq h(dv), where P0 = (1 - p d )  -1 p is the "contracted 
density." Define D(qo,~o ) so that D(qo,~o)Cqo=Identity, and let p(q0,v0)= 
P~ T h e n P  is defined by setting, for any bounded, continuous 
function F on JC/j, 

F d P =  lim (2L) 1 p dqo h(dvo) F d P  (q~176 (1.2) 
L ~ c ~  - - L  

[-Using the existence of finite moments, ~3'4) it can be proved that 
P(J/g~) = 1.] 

We next define the hard-rod dynamics. It will be more convenient to 
follow the motion of a "pulse" rather than that of a given hard rod. 
Therefore, we allow the rods to interchange labels upon colliding. A 
collision thus affects a jump by +_d (instantaneously) in the motion of a 
pulse. The fluid can be regarded as a collection of "ideal gases," one for 
each velocity in the system, which interact with each other only by the 
jumps caused by collisions. 

The motion of a single pulse is given by [let (q0, Vo) ~ X] 

q(t) = qo + rot + dnx(qo, Vo, t) (1.3) 

where nx(qo, v0, t) is the number of collisions suffered by the pulse during 
its motion up to time t. The latter can be computed in terms of the contrac- 
ted picture as follows. Let T o denote the free (ideal-gas) evolution of a fluid 
of point particles. Then nx(qo, Vo, t) is the number of crossings of the point 
q(z) = qo+ vo~ by particles of velocity v ~ Vo during the free evolution: 
Z ~ T~ 0 < "c ~ t. The evolution of the whole hard-rod configuration 
(which we denote by Tt) can also be given in terms of the free evolution 
(let Sb denote the shift in space by b): 

T~X = Snx(qo,vo , t ) a D  qO + ~o T~ X (1.4) 

nx ( . )  is always well-defined if Xe  J//~. (2-4) 
One can also define in a similar fashion the motion of a "test pulse" 

added to the fluid at some instant to, defined to be a "zero-length 
hard-rod" which jumps by + d at the instants of collisions with the true 
rods and otherwise moves with a preassigned velocity Vo. The only change 
needed to define its motion occurs if, at to, its initial position q0 is overlap- 
ped by a rod. In that case we add to the definition of the collision number 
a "collision" occurring at time zero which moves qo instantaneously to the 
"outgoing" position. ~ This affects its motion by at most +_d. 

We next introduce hydrodynamic scalings and the locally conserved 
fields, e > 0  will be our scaling parameter; e--*0 will define the 
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"hydrodynamic limit." Only space and time will be rescaled. We will call 
the scaling (q , t )~(e - lq ,  e-lt), where (q,t) will now denote the 
macroscopic space-time point, the "Euler scaling" (it is the scaling under 
which the classical Euler equations remain invariant). Let ~0e 5~(N 2) be a 
"test function" [ j ( N 2 )  is Schwarz's space of smooth, rapidly decreasing 
functions]~ and let Nx(dq, dr) be the configuration X, regarded as a locally 
finite measure on N2. Define 

Z~,(~o) =- ~ f Nr_~,x(e -1 dq, dr) co(q, v) (1.5) 

Z.~( �9 ) is called the (rescaled) density field. Since velocities are individually 
conserved for hard rods, each field Z~(O-6v), ~5 e SP(N), v e N, is locally 
conserved, so that Z.(.)  is a linear combination of locally conserved fields. 

Hydrodynamic theory predicts that Z~(q~) should have a deterministic 
limit, and in fact it was proven (3'4) that, for a suitable class of non- 
equilibrium initial states P~ on ~{a [ P ~ ( ~ )  = 1 for all e > 0], 

lira E~Z~((p) = Z, (q) )  (1 .6)  
~ 0  

for any (p, t, and 6 > 0, where 

Z,(~o) = ff  dq dv ~o(q, v) p(q, t; v) (1.7) 

is a process supported on continuous functions p(-, t; v) satisfying the 
Euler equation 

3p(q, t; v)/~t = ~/Oq {vp(q, t; v) + dp(q, v, t) 

I, 1 • f dv ' (v ' -v )p(q ,v ' ; t )  dv" p(q,v";t) (1.8) 

Fluctuation theory concerns the CLT corrections to this deterministic limit. 

2. E Q U I L I B R I U M  F L U C T U A T I O N S  ON THE EULER 
T I M E  SCALE 

The Euler time scale refers, as mentioned above, to the space-time 
scaling (e-lq, e-~t), e > 0  and tending to zero. In this section we are 
interested in a limit theorem for the fluctuations of occupation numbers 
around their equilibrium values, with the Euler scaling, and jointly for 
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several (macroscopic) times. In order to give the clearest exposition of our 
methods, we first give a limit theorem for the occupations of several inter- 
vals (a multivariate CLT), and then prove a stronger result for fluctuation 
fields, defined by integrating smooth test functions against the "fluctuation 
random measure" to be defined below. The latter is a kind of "invariance 
principle" for the fluctuation process. We first prove the CLT assuming 
that h(dv) is a discrete measure supported on finitely many velocities 
{v~,..., vk}, i.e., we take h(dv)= ~ h(vi)3v,. We show how to remove this 
restriction subsequently. 

Let N,([a, b]; v) denote the number of hard rods of velocity v located 
in the interval [a, b] at time t. We define the fluctuation random measure 
Y.~(. ) by 

Y~([a, b]; v)=-~l/2[N:~t([e-la, e - lb ] ;  v ) - p h ( v )  e - l ( b - a ) ]  (2.1) 

Note that Y.~(-) has the Euler scaling of space and time, the correct cen- 
tering, and a prefactor el/2 (which anticipates normal fluctuations) built in. 

v " for any choice We shall prove a multivariate CLT for (Y~,([ai, bi]; i))i= 
of (ti, ai, bi, v~), i= 1,..., n, and compute the covariance structure of the 
limiting Gaussian variables. 

Let xt(q, v) be the location at time zero of a velocity-v test pulse 
located at time t at q, and let x~(q, v)=-x:it(~-~q, v). Then we have the 
obvious equality 

N~-l,([e-la, e - lb];v)=No([x~(a ,v) ,x~(b ,v)] ;v)+O(1)  (2.2) 

where O(1) is a term bounded by 1 in absolute value (independently of e, a, 
b,...) which corrects for the possibility that one of the test pulses may be 
overlapped by a velocity-v rod at time t. Since No(') is random, we have a 
random occupation of a random interval. Following the intuition coming 
from central limit theorems for random sums of random variables (see the 
Appendix), we rewrite (2.1) using (2.2) in order to obtain a term with the 
proper (random) centering: 

Y~([a, b]; v )=  el/Z { No([x~(a, v), x~(b, v)]; v ) -  oh(v)[x~(b, v)-x~(a,  v)] 

+ ph(v)[x't(b, v) - x~t(a, v) - e-L(b -- a)] } + O(e ~/2) (2.3) 

In (2.3) the first two terms in curly brackets form a quantity to which 
Billingsley's CLT for random sums applies, so it will have a Gaussian limit. 
We proceed to treat the remaining terms, which will fluctuate on the same 
scale. (The interaction with the "gases" of rods of velocities w ~a v enters in 
these remaining terms.) 
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From the definition of the motion of a test pulse, 

x~(q, v) = e - lq  _ e - lvt - dn~-,,(e- lq, v) + 0(1 ) (2.4) 

where n,(q, v) is the algebraic number of collisions of a test pulse of velocity 
v, located at time t at q, during the motion in the time interval [0, t]. 
[n,(q, v) is actually defined as the number of "collisions" (crossings) in the 
contracted picture, contracting about q at time t. Equation (2.4) and other 
relations below are all proved by using the contracted representation; for 
the details see discussion below.] We have 

nt( q, v)= ~ n,(q, v; w) (2.5) 
w ~ v  

where n~(q, v; w) is the number of collisions with rods of velocity w. The 
latter can easily be expressed in terms of time-zero occupation numbers: 

n,(q, v; w)= No([X,(q, v), x,(q, w)]; w)+ O(1) (2.6) 

[Here and in the following we adopt the convention that N([c, d ] ) -  = 
-N( [d ,  c]) if it happens that d < c. ] Equation (2.6) expresses in an obvious 
fashion the location at time zero of all the rods of velocity w which collided 
with our rod of velocity v during the motion. 

Combining (2.4)-(2.6), we have 

x~(b, v ) -x~(a ,  v ) = e - l ( b - a ) - d  ~ {No([x~(a, w),x~(b, w)];w) 
W.I~V 

- No([x~(a, v), x~(b, v)]; w)} + O(1) 

= e - l ( b - a ) - d e  -1/2 ~ { Y[([ex~(a, w), ex~(b, w)]; w) 
w ~ v  

- Y6([ex~(a, v), ex~(b, v)]; w)} 

- dp ~ h(w){x;(b, w)-X~(a, w) 

- [ x ~ ( b ,  v ) - - x ~ , ( a ,  v)]} + O(1) (2.7) 

In (2.7) we have added and subtracted some terms in order to introduce 
some fluctuation numbers (with random intervals). Equation (2.7) can be 
viewed as an inhomogeneous system for the vector ~v-  x~,(b, v ) -  x~(a, v ) -  
e - l ( b - a )  of form 

(m~) v = Fv (2.8) 
where 

M = ( 1 - d o ) I + d o P  (2.9) 
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P is the orthogonal projection onto 
terms containing Y~(.). Inverting, we obtain 

1 M .... Fw 
va 

with 

1 in L2(h(dv)), and F~ denotes the 

(2.10) 

M -1 = (1 - dp) -1 ( I -  dp P) 

- ( 1 - d p ) - t  C (2.11) 

where we have introduced a matrix C =- I -  dp P for later convenience. 
Substituting these results into (2.3), we arrive at 

Y~,([a, b]; v)=  Y~([ext(a, v), ~x~(b, v)]; v) 

-dp(1  - d p )  -1 h(v) ~ C~.w~ {Y~([ex~(a, w'), ex~(b, w')]; w') 
w w '  

- Y~([ex~(a, w), exit(b, w)]; w')} + 0(51/2) (2.12) 

The following facts will be proven later. For the asymptotic motion of 
the test pulses 

ext(q, v ) - q -  ft  ~ 0 (2.13) 
e ~ 0  

where 0 = (1 - pd)- 1 v is called the effective velocity of a pulse of (intrinsic) 
velocity v. For the asymptotics of the time-zero fields, let Yo([a, b]; v) be a 
Gaussian random measure (i.e., for any set ai, hi, vi, i =  1,..., n, they are 
jointly Gaussian r.v.'s which are a.s. additive functions of the intervals) with 
covariance 

EYo([a,b];v) Yo([c,d];w)=ph(v)C~2~l[a,b]c~[c,d]l  (2.14) 

(C 2 is the square of the matrix C introduced earlier). Then 

(y~([ai, b~];v~))7= ~ d , (yo([ai, b~];vi))7= 1 (2.15) 

It follows immediately from (2.12)-(2.15) and Billingsley's theorem (see the 
Appendix) that 

Y~(Ea, b]; v)-~Z-~ o Yo([a-Ot,  b-Ot];  v) 

- dp (1 -dp )  l h ( v ) ~ C , , ~ { Y o ( [ a - f f v ' t , b - ~ ' t ] ; w ' )  
w w '  

- Y o ( [ a -  ~t ,  b - ~ t ] ;  w' ) }  (2 .16)  

jointly in distribution for any finite collection of a~, b~, vi, and t~, i = 1 ..... n. 
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Thus, the fluctuation random measures have a jointly Gaussian limit. 
The covariance structure of the limiting random measures can be computed 
from (2.16), but the formula simplifies considerably if we first introduce 
fields for the limiting process. 

Let y(R2) be the Schwarz class of C ~176 rapidly decreasing "test 
functions" on ~2 and let 5#'(N 2) be its dual, the space of tempered dis- 
tributions. Let Po be the probability measure on ~,(~2) with characteristic 
function 

Ep0 e x p [ -  iYo(~O)] = e x p [ -  (1/2)((p, C2(p)2] (2.17) 

where Yo((p)({)=(~,(p),,s and ( , ) 2  denotes the inner product in 
L2(ph(dv) dq) (the existence and uniqueness of Po follow from Minlos' 
theorem/12~) - Po is a Gaussian measure with covariance given by 

EPo Yo((P) Yo(~) = (~P, C2~9)2 

= ~ ph(v) Cv2w f dq (p(q, v) ~(q, w) (2.18) 
12, W 

The random field Yo(' ) extends by taking limits in probability to "test 
functions" of form l~,,b3(q). 6 v, with covariance still given by (2.18). 

As explained in the introduction, the hydrodynamic theory for 
equilibrium fluctuations predicts that the limiting Gaussian field will have 
the', form 

Y,(~p) = Yo([exp(Afft)](p) (2.19) 

where Ao is the generator of the linearized Euler flow [linearizing as 
ph(v) + 6f,(q, v) h(v)], and A* is the adjoint of Ao in L2(ph(dv) dq). {One 
expects to get A* in (2.19) rather than Ao, since 6f, satisfies (O/~t)Of, = 
Ao 6f,, and 

Yt(~o) ~ p f dq Z h(v) ~p(q, v) 6f,(q, v) 
v 

= (q~, [exp(Aot)] bfo ) = ([exp(A*t)] r bfo) 

Yo( [exp( A *t ) ] q~ ) } 

In ]!act, one finds from (2.16) by explicit calculation for "test functions" of 
form ~o(q, v) = 1Ea, b~(q)" 6~, 

Y,( q~ ) = Yo( T,* q~ ) (2.20) 
where 

[T,*~oJ(q, v)= ~ - '  -' Cw, wC~,w,~O(q + w t, w) (2.21) 
w , w '  

822/52/3-4-36 
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It is easily checked that Tt* is a semigroup with generator 

A* = -C-1DoC (2.22) 

where 
D O = diag(~5 ~,..., ~Sk) O/~3q (2.23) 

Hence (since C*=  C, D* = -Do)  

Ao= CDoC l (2.24) 

and one checks without difficulty that Ao is indeed the linearized Euler 
generator. 

We summarize our first result in the following theorem (the restriction 
to discrete velocities is inessential; see below). 

T h e o r e m  2.1. Let Y,(.) be the rescaled fluctuation measure-valued 
process of the hard rods in equilibrium. Then Y~(.) a Yt(') (in the sense of 
convergence of finite-dimensional marginals), where Yt(.) is a Gaussian 
measure-valued process satisfying 

Y,(~o) = Yo([exp(A~t)] ~o) (2.25) 

with A0 the generator of the linearized Euler equations. 

We next prove a stronger result for convergence of the random fields. 
Let P~ be the distribution [on D([-0, ~ ) ;  9~ the space of paths lying 
in 5e,(~2), given its dual topology, which are right-continuous with left 
limits] of the distribution-valued process 

Y~(q~)-~'/2II N~-,t(~ l dq'dv)q~(q'v)-e--lP~h(v)v f dqcp(q,v)] (2.26) 

Let P denote the process {also living in D([-0, ~) ;  5e,(~2)), but in fact sup- 
ported on C([0, ~ ) ;  5~,(~2)), the space of continuous paths} induced by 
Y,(.). We shall prove that P*--*P as ~ 0  in the weak topology on 
measures. This means that, for every bounded, continuous functional F on 
path space, Ep~F---, EpF. For example, one can take 

F(T.)= sup sup I(~v,~p~)] ^ 1, q)i~S~ i=l,...,n 
O<~z<~t i=l,.. . ,n 

In order to establish this stronger form of convergence, we shall need 
the following facts, whose proof we postpone. 

Lemrna 2.1. Let P~ (resp. Po) be the distribution of Y~(.) [resp. of 
Y0(')] on ~t(~2) ,  Then: 
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(i) 
(ii) 

8 > 0  

(iii) EY~(~o) Y~(@)-, EYo(q~) Yo(6) for all ~o, 6 

Lemma 2.2. There is a Sobolev norm Ill'Ill on 
constant C such that, for all q), s, t, 

P~ ~ Po weakly 

supElY;(q~)[2<~C I[q)[[ 2 for some constant C and all q) 

(2.27) 

(2.28) 

5f(~  2) and a 

s u p E  I Y~(~p)- Y~(cp)I2 ~< C ]ll~ltl 2 I s - i t  2 
~ > 0  

(2.29) 

Remork. The reader may have expected a term O([s-t[) on the 
right side of (2.29). The absence of this term reflects the deterministic 
nature of the evolution of the fluctuation fields on the Euler scale. 

The convergence of finitely-many fields in distribution follows easily 
from Lemma 2.1, stationarity, and Theorem 2.1. In fact, for any q~i, ~ ,  t~, 
i = 1,..., n we have 

E exp [ i  

1 ~ E  
j = 1  

n 

j = l  

2j=, 

s 
~< -~- ~ r II ~oj - ~b/I 2 (2.30) 

j = l  

By approximating each ~oi~ 6 e by linear combinations of functions of 
form &~. Ira, hi(q) in L2-norm, one can make the right side of (2.30) less 
than 6. Then letting e --+ 0, using Theorem 2.1, and letting 6 --+ 0, one proves 
that finitely-many fields have a jointly Gaussian limit. 

There remains only to prove tightness of the process. It suffices to 
establish the following two inequalities: 

s u p E [  sup IYg(q , )12 ]~<C ' I l t~0l [12t2+c  " [1~o112 2 (2.31) 

l i m s u p P [  sup [Y~(~o)-Y~,((o)f>6]~O (2.32) 
l ~ 0  ~ > 0  O ~ r , r ' ~ t  
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for all t, ~o, fi and some constants C' and C" [I1-[12 is the L2(pdqh(dv)) - 
norm ]. 

Proof of (2.37). Let ~ = 2 "~0. Since our process is separable, 

E[  sup I g~(~o)l 2] 
O~r~<t 

= lira E sup 
a ~ 0  L0~<'c~<t k = l  

<~2 lim [ t ~ - * ] E [  y '  IY~=(q~)- Y ~ k _ l ) ~ ( ~ ) [  2 
&~0 k = l  

[t~ -~ ] 
~<lim [t~ 1"] E c ' l l t q ~ l l l 2 ~ 2 + c " l l ~ ~  

~ 0  k = l  

= c '  Itl~lll 2 t2q  - C"  IIq~lf~ (2.33)  

[Y~a((/}) - Y?k 1)a(q})] "~ YS(q }) 2jq 

+ 2EYe(q3 )2 

where we used the Cauchy-Schwarz inequality in the second line and 
(2.27) in the third line. 

Proof of (2.32). 

P[  sup 
iT-- z'l ~<l 

I Y ; ( ~ ) -  r;,(~o)l > a]  

= lim P sup ~ [Y~(~o) -  Y{k ,3=(qo)] > 6  

I [('C + l)~-1] 1 ~< lim P sup ~2 IYL({o)-  Y{k_~}~(cp)l > 6  
: { -40  I._O~<* ~< t [ z a - ~ ]  

~<l imP sup ( l a - ' + l )  1/2 [Y~(qo)-Y{k_13~({o) 2 >(~ 

{ j } ~< lim P (/o~ -1 + 1) 1/2 I Y~=(cp)- Y(k_l)o~((p)[ 2-11/2 >c5 
~ 0  t- 0 

[(t+ l)~ -1 ] 
~< lim 6-2(l~-1 + 1) ~ ElY~(~o)--Y~k-1)~(~o)[ 2 

r 0 

~< lim c5-2(l~ -1 + 1)[(t + l) c~ -~ + 1] C IIl~olll 2 ~2 
~ 0  

= 3-2 l ( I+  t)C Ill{Pill 2 (2.34) 

where the Cauchy-Schwarz inequality, the Chebyshev inequality, and 
(2.27) have been used in lines four, six, and seven, respectively. 
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We summarize in the following theorem (the last statement will be 
proven in Section 4). 

T h e o r e m  2.2. The fluctuation field Y~(q)) converges weakly to the 
Gaussian (generalized) Ornstein-Uhlenbeck process (14~ Yt(cp) satisfying 

dYt(~p) = Y,(A*q)) dt (2.35) 

with initial condition 

Yo(q~) = V(o)(q~ ) (2.36) 

where Y(0)(') is Gaussian with covariance 

EY(o)(CP) Y(o)(0)= (q0, C2~)2 (2.37) 

In addition, for all (p, ~, t >~ 0, 

lim EYe(q)) Y~($)= EYt(rp) Yo(~)= (q), eA~ (2.38) 
e ~ O  

We now give the proofs of the facts used in the previous analysis. We 
begin with the asymptotics of the time-zero field. 

We use the contracted representation, contracting around the origin. 
We consider first the case that the origin is uncovered {i.e., we consider the 
conditional hard-rod state, conditioned on Xc~ [ - d ,  0 ) = ~ } .  The con- 
tracted state is Poisson with density p o = p ( 1 - p d )  -1. Let a < b  be given 
and let Ca(a ), Ca(b) be the (random) contracted positions of e-la,  e lb 
(resp.). These are given by, for q > 0, 

C;(q) = sup{r: r + dN;([0, r ] )  < e - lq}  (2.39) 

where N;([c, d])  is the occupation number of [c, d] in the contracted 
point process. In terms of the contracted configuration the hard-rod 
fluctuation measure is given by 

YO([a, b]; v) = el/Z{N~)([C~(a), C0(b)], v) - ph(v) t;- l(b - a)} 

= el/2{N~([Ca(a), C0(b)], v) - poh(v)[C~(b) - C0(a)] 

+ poh(v)[CO(b ) - C0(a)] - e -  1(1 - pd)(b - a) } + 0(~ 1/2) 

(2.40) 
Using (2.39), we obtain 

r•([a, b]; v) = e'/Z(N;([CO(a), C~(b)]; v) -poh(v)[C~o(b)-  Ca(a)] 

- p dh (v )~  {N;([CO(a), C;(b)];  w) 
w 

- poh(w)[C; (b) -  Ca(a)] } + O(e 1/2) (2.41) 
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Let Y;(-) be a Gaussian random measure with covariance 

Ey~([a,b];v) y~([c,d];w)=poh(v)bv, wl[a,b]n[c,d][ (2.42) 

By an easy argument from (2.39), we obtain a weak law of large numbers 
for contractions: 

eC~o(q)-(1-dp)q P) 0 (2.43) 

In fact, if q > 0 ,  6 > 0 ,  $ = 3 - e d ,  

P[eC~o(q) > (1 - dp)q + 6] 

= e[C~(q) > [(1 - dp)q + 6] ~-~, 8 - 1 q  _ dN~([O, C~(q)]) 

> [ ( 1 - d p ) q + $ ]  e -1] 

~P[dN~([O,(1-dp)qe- l+$e- l l )<dpqe 1-6e 1] 

= P [ - ~ > d  1(1 -dp)  -~ 6 e - ' ]  (2.44) 

where r is the centered Poisson of variance (pq+po 6) e -1. Therefore, by 
Chebyshev's inequality the last line is less than d 2 ( 1 -  dp) 2 ~5-2(pq + po6)e, 
which tends to 0. A similar argument applies to P[eC~(q) < (1 - dp)q-  6]. 

Using Billingley's theorem (see the Appendix), we obtain 

Y~([a, b]; v) ~, Y~([a, b]; v ) -pd~  Y~([a, 5]; w), 
w 

t]= (1 -pd)q  

(2.45) 

For the general case we can disintegrate the hard-rod equilibrium state 
# as /~ = #0 + S~ dO I~o, where #0 is the previous state and /~0 is /~ con- 
ditioned to 0 being the first uncovered point on the left of the origin. The 
state #o may be contracted about 0; the resulting state is Poisson with an 
extra particle at the origin; therefore the previous results hold also for ~to. 

Similar results hold for fields. We first note that (from the exact 
calculations of ref. 19, or computing using contractions as above) 

sup EY~((p) 2 ~< C II~pll 2 (2.46) 
~ > 0  

[ I1" 112 is the L2(ph(dv)dq)-norm] for some constant C and all ~0 e 5e(~2). 
By an argument identical to that used before [after Eq. (2.30)], one 
obtains from (2.45) 

y~ , a , (2.47) ( O ( ( P i ) ) i  = 1 ' (Yo((Pi))i=l 
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where Yo(') has covariance given in (2.18). Since tightness is also implied 
by (2.46), we have completed the proof of weak convergence of the 
time-zero fields. The convergence of the second moments (covariance) of 
the measure or field can also be proven with contractions, but we omit this 
as reproducing earlier work. (19) It is easy to check that the limiting 
Gaussian ~ process given in (2.45) has the covariance given in (2.14). The 
error in the approximation is O(e 2) (for fields). 

We turn next to the proof of the facts used concerning the dynamics. 
We contract about a "test" pulse (q0, vo). For a fixed hard-rod con- 
figuration X let Cqo.x,(q) be the contracted position (at time t) in the time- 
evolved configuration X,.  [Cqo,xt(qo ) = qo "q-O(1), the "O(1)" referring to a 
jump of at most _+d if qo is covered at time t.] Let n,(qo, Vo)-algebraic 
number of crossings ("collisions") of the particle (qo, Vo) in the contracted 
representation during the time interval (0, t] in the free (ideal-gas) 
evolution. In terms of this collision number, the contracted image at time 
zero of the point (q, w) at time t is given by 

x~(q, w) = q - wt - dn,(qo, Vo) + O(1) (2.48) 

One must still "dilate" around q o - v o t  to obtain the hard-rod con- 
figuration at time 0. Equations such as (2.6) are easily checked in terms of 
the contracted dynamics. 

We next prove the LLN for the asymptotic motion of the pulses. We 
consider the Palm measure at time t relative to the point (qo, Vo), which 
can be thought of as the conditional measure, conditioned on a rod being 
there. For a test pulse the proof is essentially the same. Contracting around 
(qo, Vo) at time t, we have 

n,(qo, Vo) = n+ (qo, Vo) - n ; ( q o ,  Vo) (2.49) 

where n + is the number of collisions from the right or left during the 
motion. In the contracted representation these are occupation numbers of 
the regions 

{(q', w): _+w< +Vo, +qo>~ +_q', ++_[q'+(Vo-W)t]>~ +qo} (2.50) 

The contracted state Cqo(.,t;f)\(qo, t)o) is Poisson on ~2 with intensity 
Po dq h(dv). Hence 

En~ (qo, Vo) = +_pt fE +_vo, +_~) (Vo - w) ,~(dw) (2.5l) 
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We conclude from the strong law of large numbers that 

ex~(qo, Vo) -qo+Vot+dpo t  (Vo-v)h(dv)  
c o  

= ex~(qo, Vo)+Oot-~O a.s. (2.52) 

as ~ -+0 .  

We next prove Lemma 2.2. It is simplest to employ the exact 
calculation of the covariance (for fixed e > 0) of ref. 16, employed also in 
ref. 19. Define 

EYe(q)) Y~(~9) = (0, T~qo)2 (2.53) 

where ( , )2 is the inner product in L2(p dq h(dv)). The previous authors 
found that in fact 

r~ = e~'T~ (2.54) 

with A s the generator of a contraction semigroup. Since the underlying 
microscopic evolution is unitary (in L 2 of the equilibrium state), one has 
that 

T~*= T ;  t (2.55) 

where the asterisk denotes adjoint in L2(p dq h(dv)). Therefore 

T~* = T;, A 'T;  = -T~(A~) * (2.56) 

In fact, as shown in ref. 19, A ' =  A0 + eA1 + O(e2), where Ao and AI are the 
Euler operator and Navier Stokes correction, respectively. 

Using (2.54) and expanding in t using Taylor's theorem and 
stationarity, one finds 

E[  Y~(q0)- y~(q~)]2 = 2[((p, T~cp)2 - (~o, ea"'T~qo)2] 

fo =2(p ,A~T;q~) t+2 drr(qo, (A') 2 T~o)z 

<~ t2 sup ll(A~*)2 (ptl~ <~ C ll~p"llz t2 (2.57) 
e : > 0  

In (2.57) the term O(t) vanishes by the skew-symmetry of A ' [Eq. (2.56)]. 
The last bound follows from the exact calculations in ref. 19. This gives 
(2.29). 

We next discuss how we can remove the restriction to a discrete 
velocity distribution. If the velocity distribution is continuous 
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[h(dv)=h(v)dv], we must replace intervals in space (N) by regions, 
rectangles say, in the one-particle phase space (~2). Accordingly, we define 
the fluctuation random measure in the continuous case by 

Y~(Ea, b] x [vl, v2]) 

=-el/2[N~-~(Ee-la, 8-1b] x Evl, v2])] - p e - l ( b - a )  I'2h(w) dw (2.58) 
~v 1 

The first term on the right side contains the number of rods in the spatial 
interval [e-~a, e-~b] with velocities between v~ and v2. 

We next take 6 > 0 small and V < ov large. We divide phase space into 
horizontal strips of width 6 and ignore velocities v with Iv[ > V. Assuming 
that v~, v2 are integer multiples of 6 and writing 

R ~- [e-la, e-lb] x [vl, v2] 
k2 k2 

= ~ [~-la, e -~b]x[( j -1)6 ,  j6]=- ~ R~ (2.59) 
j = k  I j = k l  

we can then carry out the derivation leading to (2.12), approximating the 
random preimage at time zero of a rectangle R} by another rectangle, i.e., 
we write 

N~ ~,(R})=No(Ex~(a, jfi), x~(b, j6)] x [ ( j -  1)6, j6])+r)~6 (2.60) 

The error r)~6 is incurred by replacing the random preimage of R~, which 
has irregular right and left boundaries, by a rectangle. Hence r~.6 = o(c5) in 
the sense that 

lim 6-11imsup(Er),6)~ v EeE(r~,6-Er).6)" 211/2=0 
6 ~ 0  e ~ O  

Another error is incurred by ignoring collisions with rods of velocity w, 
IwJ > V. We choose V= V(6) so large that ~ l~l~l>vh(dv)-~O. Hence, if 
we define 

we have 

g}~k = Ex~(a, j,~), x~(b, j6)] x [(k - 1)~5, kcS] (2.61) 

= Z Z -) Cl6.k ~ Y~(R~.I) + 0(6) 
j k , I  

(2.62) 

Now Billingsley's theorem applies as before; with 6 fixed, the first term on 
the right side of (2.62) therefore has a Gaussian limit (jointly for any finite 
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number of times and rectangles). The covariance structure is still given by 
(2.14) and (2.16) [(v, w) replaced appropriately by (j6, k6) and the inter- 
vals by strips of width 6]. 

We next pass to the limit 6 ~ 0. It is necessary to switch to smooth 
test functions, so let ~b s C~(R2). Approximating ~b by linear combinations 
of characteristic functions of rectangles R ~ and using the argument given 
before [after (2.30)], we obtain, taking limits e -~ 0, the approximation of ~b 
tending to ~b, then 6 - ,  0, a Gaussian limit of form 

Y,(O)-- Yo(T,*O) (2.63) 

with Tt* given in (2.21) and Yo Gaussian with covariance 

EYo(O) Yo(O) = f l  dv dw h(v) c(v, w) f dq ~b(q, v) @(q, w) (2.64) 

and 

c(v ,  w)  = 6 ( v  - w)  - p d h ( v )  (2.65) 

This gives Theorem 2.1 for continuous velocities. Theorem 2.2 follows 
as well, since tightness did not depend on having a discrete velocity 
distribution. 

3. THE LLN A N D  N O N E Q U I L I B R I U M  F L U C T U A T I O N S  ON THE 
EULER SCALE 

In this section we compute the limit of the fluctuation random 
measure with Euler scaling and a nonequilibrium initial state (actually, a 
family of initial states). The limiting process is again deterministic and is 
governed by the linearized Euler equation, but now linearized around a 
nonstationary (time-dependent) solution. The method is the obvious 
generalization of the method of Section 2 (that is, we reduce the fluctuation 
measure at time t to a "random space change" of the measure at time zero, 
and then apply Billingsley's theorem). The formulas become somewhat 
more complicated. We confine ourselves to proving the appropriate 
generalization of Theorem 2.1. We use the setup of ref. 3; in particular, we 
will assume the regularity conditions from Theorem 4.1 there, as well as 
some other hypotheses on the family of initial states P~ (we also show how 
the LLN follows from the results in ref. 3). The reader should first become 
familiar with the facts proven there. 

Since the CLT can be regarded as describing the first corrections to 
the LLN, we discuss the LLN first. This follows readily (at least for 
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discrete velocities) from (2.2), the results of ref. 3, and the (weak) LLN for 
the occupation numbers of random regions. The latter theorem asserts in 
our context that, for all c5 > 0, 

PI  eN~ >61--- '0  (3.1) 

where p(., .) solves the Euler equation. This follows readily from (1) the 
weak LLN for the time-zero measure, 

p sNo([e-la, e-lbJ;v)- o(q,O;v) dq>?) ~0  (3.2) 

and (2) the weak LLN for the collision numbers, with limiting value 
predicted by the "'continuum analog" of the hard-rod fluid (see below). 
These are proven in ref. 3. The restriction to discrete velocities can be 
removed along the lines discussed in Section 2. 

Let p(q, v; t) be a solution of (1.8) satisfying the regularity conditions 
assumed in ref. 3, Section 3. Define, as in Section 2, 

y~([a,b];v)=~l/2 {N_,t([e_la, _lb];v ) ~-~b } -~-~a p(~q,v;t) dq (3.3) 

Romarks. With this definition, Y.~(.) is not a centered random 
variable. The correct centering of the occupation number would be 

-la kJ:) (q, v) dq (3.4) 

where k ~  is the first correlation function of p~.(3,4) We define Y.~(. ) as in 
(3.3), since we are interested in the limiting fluctuations around the Euler 
equation. Since we shall prove that Y.~(.) has a mean-zero, Gaussian limit 
(with appropriate assumptions on P~), we shall establish indirectly that the 
difference between the second term in (3.3) and (3.4) goes to zero (with the 
prefactor el/2). (That this difference is not of order e -~/2 is not surprising, 
since both quantities are averaged, i.e., nonrandom). 

Proceeding as in Section 2, we rewrite (3.3) as 

fx~(b,,) v; O) dq} Y~([a, b]; v)=e ~/2 (No([x~(a, v), x~(b, v)], v)-j~(~.~) p(sq, 

~7(~,~) p(sq, v; O) dq - ~,-~ p(eq, v; t) dq 

+ O(d/2) (3.5) 
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We write the terms in the first brackets in (3.5) as Y~([x~(a, v), x~(b, v); v), 
as before; it will have a Gaussian limit by Billingsley's theorem. We 
proceed to treat the remaining terms. 

Define xt(q, v) to be the "continuum analog" of the motion of the 
point (q, v) in an appropriate "continuum fluid" (ref. 3, Section 3). In the 
notation of ref. 3, 

xt(q, v) = uTol~.t(q), Po(q, v) = p(q, v; 0) (3.6) 

Since (ref. 3, Section 3) 

p(q, v; t) = po(U~o~.,(q), v)(d/dq) upo~v.,(q ) (3.7) 

we can write the last term in (3.5) after a change of variables as 

[ f x t ( b , v )  
p(q, v; O) dq (3.8) 

~xt(a,v) 
Make the change of variables q ~ emq in the last bracket in (3.5). One 
obtains 

fO e 1/2[~x~(b'v) xt(b,v)] po(el/2q + x,(b, v), v) dq 

re-l/2[ex~(a,v) -- xt(a,v)] 
|~o P~ + x,(a, v), v) dq (3.9) 

Expanding the argument of Po and using the assumption that d/dq Po is 
uniformly bounded, we obtain for (3.9) 

po(xt(b, v); v){e-l/2[ex~(b, v ) -  x,(b, v)] } 

-po(x,(a, v); 1)){~3-1/2[,~x~(a, ~))- x,(a, v)]} + O(e m) (3.10) 

We treat the terms in (3.10) in a fashion similar to that in Section 2. 
We have 

x ~ ( q , v ) = e - l q - e - l v t - d  ~ No([X~(q,v),x~(q,w)];w)+O(1 ) (3.11) 
w ~ v  

so that, following the familiar route, 

gl/2[x~(q, V)-- 8-1xt(q,  V)] 

= - d  ~ Y~([x~,(q, v), x~(q, w)]; w) 
w ~ v  

- d  ~ Ix~q'~)p(eq',w;O)dq'+e Xq-~-lvt  
w~v Jx~(q, w) 

- e-lxt(q, v) + O(e 1/2) 
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= - d  y~ r~(Ex~( q, v), x~(q, w)]; w) 
w ~ v  

- d  ~, {po(x,(q, v), w) el/2[xf(q, v)-e-lxt(q,  v)] 
w ~ v  

-po(x,(q, w), w)el/2Exf(q, w)-z- lx , (q ,  w)]} + O(a 1/2) (3.12) 

In deriving (3.12), we used the same change of variables and expan- 
sion used in deriving (3.10) and the following fact: 

x , ( q , v ) - q + v t + d  ~ (x'~q'V)po(q',w)dq'-O (3.13) 
w ~ v  v x t ( q , w )  

Equation (3.13) is the analog of (2.6) and expresses the location at time 
zero of the volume of "fluid" with which our pulse collided during the 
motion in the time interval [0, t]. It is easily established from the explicit 
formulas in ref. 3. 

Equation (3.12) can be regarded as an inhomogeneous system for 
~(v) =- ~l/2[x~,(q, v) -e-~x,(q, v)] of the form 

~ M~,w~(w)= g(v ) (3.14) 
w 

where 

M~,~.=Mo.w(q, t) =- [1 -dpo(x,(q, v), w)] 3v, w+dpo(x,( q, v), w) h(w) (3.15) 

Inverting, 

ei/2[x~(q, v ) -  x,(q, v)] 

M -  a y~ ( r x~ = Z  ,,w(q,t)(-a) Z o,L ,,q,w),x;(q,w')];w') (3.16) 
w w ' ~ w  

Combining these results, we arrive at 

Y~([a, b]; v)= Y~([x~(a, v), x~(b, v)]; v) 

- dpo(x,(b, v); v) Z MZI( b, t) 
w 

• ~ ~([x~(b, w), x~(b, w')]; w') 
w,~w 

+ dpo(xt(q, v); v) Z M~,~(a, t) 
w 

• Y6([x~(a, w), x~(q, w')]; w')+ O(g 1/2) (3.17) 

Equation (3.17) is the nonequilibrium analog of (2.12). 



1090 Boidrighini and Wick 

We shall need for the theorem (in addition to the hypotheses of ref. 3) 
that Y~(-) ~ Yo(' ) in distribution, where }1o( ) is Gaussian with covariance 

EYo(q)) Yo(6')-= (q~, C20)2 
(3.18) 

[Cq)](q, v)=-q~(q, v ) - d ~  p(q, w)h(w) ~o(q, w) 
w 

Since the LLN for the asymptotic motion of the pulses, 

ex~(q, v ) -x , (q ,  v) e ,  0 (3.19) 

is proven in ref. 3, we conclude from Billingsley's theorem that 

Y~([a, hi; V ) ~ o  Y,([a, hi; v) 

=- Yo([Xt(a, v), xt(b, v)]; v)-dpo(x,(b , v), v) 

x~M~.J(b,  t) Z Vo([xt(b, w), xt(b, w')]; w') 
W W ' # W  

+ dpo(X,(a, v), v) ~ M~l(a, t) 
W 

x ~ Yo([X,(a, w), x,(a, w')]; w') (3.20) 
W '  ~C: W 

Finally, we have to check that Y,(.) defined in (3.20) is the Gaussian 
process satisfying 

Y,((p) = Yo(u*o(t; 0)~0) (3.21) 

where UpoU;0) is the solution operator of the linearized Euler equation, 
linearized around the nonstationary solution p(q, t; v). In order to do so, 
we obtain an explicit form for the solution of the linearized equation in 
terms of P0 and the x,(-), and compare with (3.20). 

It is convenient to start not with (1.8), but with the explicit expression 
(3.7). We write 

p(q, t; v) = ~(q, t; v) + qh(v) f(q, t; v) 

and take (d/d,7)o in (3.7). For convenience we let 2,(q, v) - (d/&l)o x,(q, v). 
We have 

(d/&t)o p(q, t; v) = h(v) f(xt(  q, v), 0; v) d/dq x,(q, v) 

+ (d/dq ~o)(X,(q, v), v)[d/dq xt(q, v)] 2t(q, v) 

+ ~o(X,(q, v), v) d/dq 2,(q, v) (3.22) 
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We derive an expression for the (functional) derivative 2,(q, v) by 
taking (d/drl)o in (3.13), obtaining 

f xt(q,v) At(q, v)= - d  ~ f(q', O; w') dq' 
w ~ v  x t (q ,w)  

- d ~ {po(x,(q, v)) 2,(q, v)-po(x,(q, w)) 2,(q, w)} (3.23) 
w ~ u  

Inverting as usual, we obtain 

Yct(q, v)= ( - d )  Z M2~(q, t) Z (xt(q.w)f(q', O; w') (3.24) 
W w ' r  w Jx t (q ,w ' )  

Thus, combining we obtain 

f(q, t; v)=f(x,(q,  v), 0; v) d/dq xt(q, v) 

+ [d/dq ~o(x,(q, v), v)] [d/dq x,(q, v)] ~ Ms t) 
w 

2 f xt(q'w) x f(q', O; w') dq' + jbo(x,(q, v), v) 
w ' ~ - w  xt(q, w')  

1 ~xt(q, w) 
x d/dq ~ M-v,~(q, t) ~ . f(q', 0; w') dq' (3.25) 

w w '  ~ w "~ x t ( q ,  w ' )  

This last expression gives explicitly the solution operator of the linearized 
equation, linearized around iS(q, t; v). 

The hydrodynamic prediction for the structure of the nonequilibrium 
fluctuation process (on the Euler scale) is expressed by, symbolically, 

Y,([a, b]; v) ~ f(q, t; v) dq (3.26) 

Integrating over Fa, b] in (3.25), changing variables in the first term, and 
noting that the second plus third terms form a total derivative, one sees by 
comparing with (3.20) that this prediction is verified. 

We summarize the hypotheses and conclusions in the following 
theorem. 

Theorem 3.1. Let U, e > 0, be a family of hard-rod states satisfy- 
ing the hypotheses of Theorem 4.1 of ref. 3 and the following: 

(i) The density of the first correlation measure of P', k~,(q, v), is of 
the form 

k~e~(q, v)= po(eq, v) (3.27) 
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with P0 satisfying the hypotheses of Theorem 3.1 of ref. 3 [Po(') and 
d/dq Po(') should be uniformly bounded and dpo(.) should be uniformly 
bounded away from one]. 

(ii) The time-zero fluctuation measure 

y~o([a,b];v)=~,/2 {N([ _la, e_~b];v)_ f~ ~b } p0(~q, v) dq (3.28) 
d~- I  a 

converges weakly in distribution to a Gaussian random measure Y0(" ) with 
covariance given in (3.18) (more precisely, the measure on D ( ( - ~ ,  ~) ,  
5e,(~2)) induced by q ~ Y~([0, q)) converges weakly to that induced by 
q--* Yo([0, q))). 

Then the measure-valued process Y~(.) defined in (3.3) with p(q, t; v) 
the (unique) solution of (1.8) with initial data p(-; 0)--P0( ')  converges in 
distribution (jointly for any finite collection q~, b~, vi, ti) to the deter- 
ministic Gaussian process Yt(' ) satisfying 

Yt(tp) = Yo(u(t; 0)tp) (3.29) 

where u(t;O) is the solution operator of the linearized Euler equation, 
linearized around p(q, t; v). 

Remark. Families P~ satisfying (i) and the other hypotheses of that 
paper were constructed in ref. 3, Section 5. These were families of Gibbs 
states of short-range, one- and-two-body potentials. The Gaussian limit of 
the time-zero field for these measures [assumption(ii)] follows from 
well-known mixing conditions satisfied (uniformly as e ~ 0 )  by these 
measures, and from equally well known forms of the CLT for mixing 
random fieldsJ 8~ 

APPENDIX.  R A N D O M  S U M S  OF R A N D O M  VARIABLES AND 
BILLINGSLEY'S THEOREM 

We present a short discussion of Billingsley's theorem on the CLT for 
random sums of random variables, taken from ref. 1, Chapter 3, Section 12. 
For more details the reader should consult that reference. 

Let 41, 42 .... be jointly defined random variables with mean zero and 
finite variances, and assume the CLT holds: for every t >/0, 

[~-It] 
~ ~ o  Y(t) (A.1) 

i = o  
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where Y(t) has a Gaussian distribution ( [ . ] -g rea t e s t  integer function). 
Let v~(t) be a positive r.v. defined jointly with the ~ and increasing a.s. 
Assuming that v~(.) ~ v(.) (in a suitable sense) for some r.v. v(.) defined 
jointly with Y(.), we inquire whether or not one can conclude that 

r~ r(v(t)) (A.2) 

Thus, we are looking for a limit theorem for a random sum of random 
variables. We have set up the problem as a "random time change," 
although in this paper the corresponding problem appears as a "random 
space change," at fixed times. 

Billingsley's theorem holds with the following hypotheses: The joint 
distribution P~ on D([0, oe); N2)induced by t~(Y~( t ) ,  v~(t)) converges 
weakly to that induced by (Y(t), v(t)), and in addition Y(-) and v(.) are 
continuous a.s. The proof exploits the continuity property of weak con- 
vergence under the composition map: (Y(-), v(. )) ~ Yo v(. ). One concludes 
from the theorem the joint convergence 

(y,(v,(ti)))7=, d (y(v(t,)))7=l 

for any choice of tl,..., tn (convergence of the finite-dimensional marginals), 
although the actual conclusion of the theorem (weak convergence) is 
considerably stronger. 

An important special case of Billingsley's theorem (used in this paper 
to derive the Euler limit of the fluctuation random measure) is for 
Y~(. ) ~ Gaussian process and v~(t) --. (constant) t in probability. 

Billingsley includes in the statement of his theorem an additional 
hypothesis: that the "time-change" function remains bounded. However, in 
applying Billingsley's theorem, we usually do not have to impose this 
condition; for, in the definition of weak convergence, we use only bounded 
functions, and thus it suffices to know that 

lim supP[  sup v~(z)>M] =0  (A.3) 
M ~ o c  ~ > 0  0~<'~< T 

e.g., in this paper, 

lim sup P[ sup Iex~-~,(q, v)l > M ]  = 0 (A.4) 
M ~ czz ~ a <~ q <~ b 

which follows readily using contractions. 
We note that many expressions in this paper appear first as random 

sums of noncentered random variables, and the first step is always to center 
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the sum properly (by subtracting a random centering term). For instance, if 
ql, q2 .... forms a stationary sequence with Eqi = Eql = m ~ O, one centers as 

~1/2 ~f E~-l~'(/)3i~l r / i-e-%~(t)m} (A.5) 

instead of [-assuming v~(t)~ t] 

. f E~t)] - l t m }  (A.6) 

The difference between (A.3) and (A.4), 

81/2 {e --lv*(t) --  8 - I t  } m (A.7) 

may make an additional contribution if v~(t) has normal fluctuations. For 
instance, if the qi are i.i.d, with variance 1, and v~(t) ~ t a.s., then (A.5) will 
have as limit a standard Brownian motion B(t) [EB(t) 2= t], while (A.6), 
if e-%*(t) has normal fluctuations, will yield a Brownian motion with a 
different variance. 
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